

2010 CalNex Science Issues and Assets

NOAA Study in California

May-July 2010

In collaboration with CARB

Tom Ryerson
David Parrish
Joost de Gouw

2010 CalNex Science Issues and Assets

Science at the Nexus of Climate Change and Air Quality

- 1) Two problems are managed in separate ways
- 2) Sources and Processes for these 2 issues are the same (nearly).

NOAA Focus for CalNex 2010

Combined Climate Change and Air Quality Focus

- Emissions Quantification Greenhouse Gases and Precursors of O₃ and Aerosols, Increasing Importance of Biomass Burning
- Chemical Transformation O₃ and Aerosols, Day and Night, Gas-Phase and Heterogeneous
- Transport and Mixing Intercontinental, Inter- and Intra-state, Boundary Layer/Free Troposphere
- Aerosol Properties and Radiative Effects Direct Radiative Forcing, Cloud-Aerosol Interactions
- Model Development Diagnostic Evaluation of Forecast Models,
 Development of Regional Climate Models

NOAA's Assets

NOAA WP-3D Aircraft - in situ gas-phase, aerosol and cloud measurements, emissions testing (precursors and GHG), regional and inter-regional transport, day/night O₃/PM chemistry, aerosol and cloud properties.

NOAA R/V Ronald H. Brown - in situ and remote sensing for investigating marine chemistry, marine and coastal emissions, land/bay/sea breeze recirculation, aerosol-physics, -chemistry, -optics and satellite validation.

NOAA LIDAR Aircraft - regional distribution of O_3 and PM, urban and power plant plume studies, regional and interregional transport, boundary layer evolution and variability.

Collaborate with Others on fielding Ground-based Remote and In Situ Instrumentation

Other CalNex Platforms

- CIRPAS Twin Otter SOA Formation (Seinfeld)
- Los Angeles Supersite SOA Formation and nighttime chemistry (Jimenez, Stutz, de Gouw)
- Central Valley Supersite Agricultural emissions and ozone formation (Cohen, Goldstein, Wennberg, Brune, Thornton, Keutsch)
- Trinidad Head ground site Greenhouse gases, ozone sondes (NOAA GMD)
- WGC Tower Greenhouse gases (NOAA GMD, Fischer)
- Profiler Network 3-Dimensional wind fields (NOAA PSD)
- Satellites NOx emissions (NOAA CSD)

Emissions Quantification

Improved inventories are essential for predictive capability

Non-CO₂ GHG Emissions

• What can measurements tell us?

California greenhouse gas emissions

Global warming potential of greenhouse gases.

Gas	GWP	MW		
CO_2	1	44		
CH_4	23	16		
HFC-1	34a 13	00	102	

Emissions Quantification

Improved inventories are essential for predictive capability

2010: Provide more extensive data

- Spatial variability
- Agricultural contribution

Analysis by W. Trainer

flight
Los Angeles

Global warming potential of greenhouse gases.

Gas	GWP	MW	
CO_2	1	44	
CH_{4}^{-}	23	16	
HFC-1	34a 13	00	102

Emissions Quantification

Improved inventories are essential for predictive capability

Monitoring Western US NO_x Sources with OMI and SCIAMACHY Satellite

SCIAMACHY Data:

- horizontal resolution: 60 × 30 km²
- samples entire globe every 3 days at ~10:30 local time

Analysis by ESRL/CSD, Univ. Bremen, Germany

2010: Understand retrieval of point source signals.

Evaluate emission inventory on isolated interstate highways and urban areas.

Chemical Transformation

Aim to understand on a process level for predictive capability

Chemical Transformation

Aim to understand on a process level for predictive capability

Aerosol Formation Mechanisms

Ammonium nitrate layers
observed within well-mixed
boundary layer over
California in May, 2002
from the NOAA WP-3D
aircraft.
Higher altitude = colder T =

Higher altitude = colder T = more stable ammonium nitrate = gas-to-particle conversion

2010: Characterize more fully with enhanced particle composition and precurson

Neuman, J. A., et al., Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California, *J. Geophys. Res.*, 108(D17), doi:10.1029/2003JD003616, 2003.

massuramanta

Transport and Meteorology

Understanding is critical for characterizing O₃ and PM levels

Transport and Mixing

Understanding is critical for characterizing local O₃ and PM

Intercontinental Transport

2010: Study in another season?

Layered emission plumes transported from Asia

Brock, C. A., et al., Particle characteristics following cloud-modified transport from Asia to North America, *J. Geophys. Res.*, 109, D23S26, doi:10.1029/2003JD004198, 2004.

Aerosol Properties and Radiative Effects

Aim to reduce uncertainty of aerosol radiative forcing

Los Angeles plume advected into offshore stratus deck provides excellent laboratory to study aerosol indirect effect on

Aerosol Properties and Radiative Effects

Aim to reduce uncertainty of aerosol radiative forcing

Los Angeles plume advected into offshore stratus deck provides excellent laboratory to study aerosol indirect effect on

2010: Contrast aerosol-cloud interactions with VOCALS results.
Urban emission plume vs.

smelter

Air Quality Forecast and Climate Models

Provide integrated picture and predictive capability

O₃ and PM Forecast Models NOAA is to develop operational O₃ and PM forecasts for entire U.S. Currently, O₃ model is operational for eastern U.S.

PM model is under development

Regional Climate Models under Development

2010: Evaluate performance of models in California.

2010 CalNex Science Issues and Assets

NOAA Study in California

May-July 2010

In collaboration with CARB

Tom Ryerson
David Parrish
Joost de Gouw